Sains Malaysiana 54(9)(2025): 2301-2313
            
          
          http://doi.org/10.17576/jsm-2025-5409-16
            
          
          
             
          
          A Novel Variant of Weighted Quadratic Mean
            Iterative Methods for Fredholm 
  Integro-Differential Equations
  
          
          (Varian Novel Kaedah Lelaran Min Kuadratik Berwajaran untuk Persamaan 
            Integro-Differential Fredholm)
            
          
          
             
          
          NG WEI LI1 , ELAYARAJA ARUCHUNAN2,* & ZAILAN SIRI1
            
          
          
             
          
          1Institute
            of Mathematical Sciences, Universiti Malaya, 50603
            Kuala Lumpur, Malaysia
  2Department of Decision Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
  
          
          
             
          
          Diserahkan: 24 Februari 2025/Diterima: 10 Julai 2025
            
          
          
             
          
          Abstract
            
          
          Integro-differential equations
            are critical for modelling real-world phenomena in physics, engineering, and
            biology. This paper introduces a Quadratic Mean iterative method to solve dense
            linear systems derived from the discretization of second- and fourth-order Fredholm integro-differential
            equations (FIDEs). The solution of the FIDEs is approximated using finite
            difference, composite trapezoidal, and composite Simpson’s 1/3 and 3/8 schemes.
            The quadratic mean iterative method then solves the
            discretized system with different mesh sizes. As the resulting systems are
            large, a complexity reduction approach is implemented on the quadratic mean
            method to develop the half-sweep quadratic mean iterative method. The newly
            proposed iterative method includes a novel theorem, comprehensive proofs, and a
            detailed convergence analysis. The numerical results indicate that the
            quadratic mean method significantly outperforms the Gauss-Seidel iterative
            method in terms of efficiency, making it a promising solution for FIDEs.
  
          
          
             
          
          Keywords: Fredholm integro-differential equations; quadratic mean; half-sweep
            iteration; finite difference; composite trapezoidal; Composite Simpson’s rules
  
          
          
             
          
          Abstrak
            
          
          Persamaan pembezaan-kamiran adalah penting untuk memodelkan fenomena dunia sebenar dalam fizik, kejuruteraan dan biologi. Dalam jurnal ini memperkenalkan kaedah lelaran Purata Kuadratik untuk menyelesaikan sistem linear tumpat yang diperoleh daripada membahagikan persamaan integro-pembezaan Fredholm tertib kedua dan keempat (FIDEs) kepada bahagian kecil. Penyelesaian FIDEs dianggarkan menggunakan perbezaan terhingga, trapezoid komposit dan skema 1/3 dan 3/8 komposit Simpson. Kemudian, kaedah lelaran purata kuadratik digunakan untuk menyelesaikan persamaan anggaran dengan saiz mesh yang berbeza. Memandangkan sistem yang akan diselesaikan adalah besar, pendekatan pengurangan kerumitan dilaksanakan pada kaedah purata kuadratik untuk membentuk kaedah lelaran purata kuadratik separuh sapuan. Kaedah lelaran yang baharu dicadangkan termasuk teorem novel, bukti komprehensif, dan analisis penumpuan terperinci. Keputusan berangka menunjukkan bahawa kaedah purata kuadratik dengan ketara mengatasi kaedah lelaran Gauss-Seidel dari segi kecekapan, menjadikannya penyelesaian terbaik untuk FIDEs.
            
          
          
             
          
          Kata kunci: Persamaan pembezaan-kamiran; Fredholm; min kuadratik; lelaran separuh sapuan; beza terhingga;
            trapezoid komposit; Peraturan Simpson
  
          
          
             
          
          RUJUKAN
            
          
          Aihara, K.,
            Ozaki, K. & Mukunoki, D. 2024. Mixed-precision
            conjugate gradient algorithm using the groupwise update strategy. Japan Journal Industrial Applied Mathematics 41:
            837-855. https://doi.org/10.1007/s13160-024-00644-8
  
          
          Aruchunan, E. & Sulaiman, J. 2011. Half-sweep conjugate gardient method for Solving first order linear fredholm integro-differential equations. Australian Journal of
            Basic and Applied Sciences 2: 38-43.
  
          
          Aruchunan, E
  & Sulaiman, J. 2013. Half-sweep
            quadrature-difference schemes with iterative method in solving linear fredholm integro-differential
            equations. Progress in Applied Mathematics. 2: 11-21.
  
          
          Aruchunan, E., Khajohnsaksumeth,
            N. & Wiwatanapataphee, B. 2016. A new algorithm
            of geometric mean for solving high-order fredholm integro-differential equations. 723-729.
            10.1109/DASC-PICom-DataCom-CyberSciTec.2016.128.
  
          
          Aruchunan, E., Muthuvalu, M., Chew, J., Siri, Z. & Sulaiman,
            J. 2022. Examination of half-sweep closed newton–cotes quadrature schemes in
            solving dense system. 10.1007/978-3-030-79606-8_26.
  
          
          Aruchunan, E.
  & Sulaiman, J. 2010. Numerical solution of
            second-order linear fredholm integro-differential
            equation using generalized minimal residual (GMRES) method. American Journal
              of Applied Sciences, Science Publication 7 (6): pp.780-783.
  
          
          Aruchunan, E.
  & Sulaiman, J. 2010. Repeated Simpson 3/8 and
            backward difference schemes to solve first order integro-differential
            equation. National Seminar of Science and Computer (SKSKM 2010). ISBN:
            978-967-363- 153-7.
  
          
          Aruchunan, E.
            2016. The New Variants of Modified Weighted Mean Iterative Methods for Fredholm Integro-Differential
            Equations (Doctoral dissertation, Curtin University).
  
          
          Aruchunan, E.,
            Wu, Y., Wiwatanapataphee, B. & Jitsangiam, P. 2015. A new variant of arithmetic mean iterative method for fourth order integro-differential
            equations solution. In 2015 3rd International Conference on Artificial
            Intelligence, Modelling and Simulation (AIMS). pp. 82-87. IEEE. doi: 10.1109/AIMS.2015.24.
  
          
          Aruchunan, E. et
            al. 2022. Examination of half-sweep closed newton–cotes quadrature schemes in
            solving dense system. in: Abdul Karim, S.A., Shafie,
            A. (eds) Towards Intelligent Systems Modeling and
            Simulation. Studies in Systems, Decision and Control, vol 383. Springer, Cham.
            https://doi.org/10.1007/978-3-030-79606-8_26
  
          
          Aruchunan, E., Muthuvalu, M.S., Sulaiman, J.,
            Koh, W.S. & Akhir, K. M. 2014. An iterative
            solution for second order linear Fredholm integro-differential equations. Malaysian Journal of
              Mathematical Sciences 8(2): 157-170.
  
          
          Aruchunan, E.
  & Sulaiman, J. 2012. Comparison of closed
            repeated newton-cotes quadrature schemes with half-sweep iteration concept in
            solving linear fredholm integro-differential
            equations. International Journal of Science and Engineering Investigations 
            1 (9): pp. 90-96.
  
          
          Avudainayagam, A.
  & Vani, C. 2000. Wavelet-Galerkin method for integro-differential equations. Applied Mathematics and
    Computation. 32: 247–254.
  
          
          Benzi, M.
  & Dayar, T. 1995. The arithmetic mean method for
            finding the stationary vector of Markov chains. International Journal of
              Parallel, Emergent and Distributed Systems 6(1): pp. 25-37, 1995.
  
          
          Cai, F., Xiao, J. & Xiang, Z.H. Block SOR two-stage
            iterative methods for solution of symmetric positive definite linear systems.
            Proceedings of the 3rd International Conference on Advanced Computer Theory and
            Engineering, August 20-22, 2010, Chengdu, China. 378-382.2010.
            
          
          Connolly, C.I., Burns, J.B., Weiss, R. 1990.
            Path planning using Laplace’s equation. Proceedings of the IEEE International
            Conference on Robotics and Automation: 2102–2106.
  
          
          Darania, P.
  & Ebadian, A. 2007. A method for the numerical
            solution of the integro-differential equations. Applied
              Mathematics and Computation. 188(1): 657-668.
  
          
          Filiz, A.
            2000. Numerical solution of some Volterra integral equations, PhD Thesis,
            University of Manchester.
            
          
          Jin S.,
            Ming Z., George E.K. & Zhenya Y. 2024. Two-stage
            initial-value iterative physics-informed neural networks for simulating
            solitary waves of nonlinear wave equations. Journal of Computational Physics Volume 505 ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2024.112917.
  
          
          Katuri, S.
  & Maroju, P. 2025. A new approach for solving
            fuzzy non-linear equations using higher order iterative method. Scientific
              Report 15: 12972. https://doi.org/10.1038/s41598-025-97612-0
  
          
          Muthuvalu, M.S., Aruchuan, E. & Sulaiman, J.
            2013. Solving first kind linear Fredholm integral
            equations with semi-smooth kernel using 2-point half-sweep block arithmetic
            mean method. AIP Conference Proceedings vol. 1557: 350-354.
  
          
          Muthuvalu, M.S.
  & Sulaiman, J., 2011. Half-sweep arithmetic mean
            method with composite trapezoidal scheme for solving linear fredholm integral equations. Applied Mathematics and Computation 217(12): 5442-5448..
  
          
          Ortega, J. 1973. Numerical analysis: a Second Course. Mathematics of Computation 27(123):
            669. https://doi.org/10.2307/2005671
            
          
          Rathinasamy, A.,
  & Balachandran, K. 2008. Mean-square stability of milstein method for linear hybrid stochastic delay integro-differential
            equations. Nonlinear Analysis: Hybrid Systems. 2(4): 1256-1263.
  
          
          Ruggiero, V. & Galligani, E. 1990. An iterativemethod for large sparse systems on a vector computer. Computers and Mathematics
            with Applications 20:25-28.
  
          Sahimi, M.S.,
            Ahmad, A. & Bakar, A.A. 1993. The iterative alternating decomposition
            explicit (IADE) method to solve the heat conduction equation. International
              Journal of Computer Mathematics 47: 219-229.
  
          
          Sezer, M. & Kaynak, M. 1977. Chebyshev polynomial solutions of linear
            differential equations. International Journal of Mathematical Education in
              Science and Technology 14: 607–618.
  
          Sezer, M.
            1996. A method for the approximate solution of the second order linear
            differential equations in terms of Taylor polynomials. International Journal of Mathematical Education in
              Science and Technology 27(4): 821–834.
  
          
          Sulaiman, J.,
            Othman, M., Yaacob, N. & Hasan. M.K. 2006. Half
            Sweep Geometric Mean (HSGM) method using fourth-order finite difference scheme
            for two-point boundary problems. In Proceedings of the First International
            Conference on Mathematics and Statistics. June 19-21. Bandung, Indonesia, pp.
            25-33.
  
          
          Ullah, M. A. 2015. Numerical integration and a
            proposed rule. American Journal of Engineering Research (AJER) 4(9):
            120-123.
  
          
          Yuhe, R.
  & Zhang, B. & Qiao, H. 1999. A simple
            Taylor-series expansion method for a class of second kind integral equations. Journal
              of Computational and Applied Mathematics 110: 15-24. doi:
            10.1016/S0377-0427(99)00192-2.
  
          
          Zhao, J. & Corless,
            R.M. 2006. Compact finite difference method for integro-differential
            equations. Applied Mathematics and Computation 177: 325-328. doi: 10.1016/j.amc.2005.11.007.
  
          
          
             
          
          *Pengarang untuk surat-menyurat; email:
            elayarajah@um.edu.my